Понедельник, 06.05.2024, 06:47
Приветствую Вас Гость

Персональные компьютеры: современное состояние

Меню сайта
Наш опрос
Оцените мой сайт
Всего ответов: 21
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Форма входа

Сейчас ведутся разработки нового класса квантовых устройств - кванто­вых компьютеров. Идея кванто­вого компьютера возникла так. Все началось в 1982 году, когда Фейнман написал очень интерес­ную статью , в которой рас­смотрел два вопроса. Он подошел к процессу вычисления как фи­зик: есть чисто логические огра­ничения на то, что можно вычис­лить (можно придумать задачу, для которой вообще нет алгорит­ма, можно придумать задачу, для которой любой алгоритм будет долго работать). А есть ли ограни­чения физические? Вот есть закон сохранения энергии - вечный двигатель невозможен; а есть ли какое-нибудь физическое огра­ничение на функционирование компьютера, которое накладыва­ет некие запреты на реализуемость алгоритмов? И Фейнман показал, что термодинамических ограни­чений, типа второго начала тер­модинамики, нет. Если мы будем уменьшать потери энергии, шумы, то мы можем сделать сколь угод­но длинные вычисления со сколь угодно малыми затратами энер­гии. Это означает, что вычисления можно сделать обратимым образом - потому что в необратимых про­цессах энтропия возрастает. Соб­ственно, Фейнмана это и заинте­ресовало: ведь реальное вычис­ление на реальном компьютере необратимо. И полученный им результат состоит в том, что мож­но так переделать любое вычис­ление - без особой потери эф­фективности, - чтобы оно стало обратимым. Те вычисления, кото­рые делаются «просто так», ко­нечно, необратимы, но «рост нео­братимости» пренебрежимо мал по сравнению, скажем, с шумами в современном компьютере. То есть необратимость - это тонкий эффект; тут вопрос не практичес­кий а принципиальный: если представить себе, что технология дойдет до такого уровня, что этот эффект станет существенным, то можно так перестроить вычисле­ния, чтобы добиться обратимости. И в этой же работе Фейнман об­ратил внимание на то, что если у нас имеется устройство квантовое, то есть подчиняющееся законам кван­товой механики, то его вычисли­тельные возможности совершенно не обязательно должны совпадать с возможностями обычного устрой­ства. Возникают некоторые допол­нительные возможности. Но пока непонятно, позволяют они полу­чить какой-то выигрыш или нет. Фактически, он и поставил своей статьей такой вопрос. Кстати, Ю.И. Манин в конце семидесятых годов написал две популярные книжки по логике - «Вычислимое и невычислимое» и «Доказуемое и недоказуемое», и в одной из них есть сюжет про кван­товые автоматы, где он говорит о некоторых кардинальных отличи­ях этих автоматов от классических. В середине восьмидесятых годов появились работы Дойча (D. Deutsch), Бернстайна и Вазирани (Е. Bernstein, U. Vazirani), Яo (A. Уао). В них были построены формальные модели квантового компьютера - напри­мер, квантовая машина Тьюринга. Следующий этап - статья Шора (Р.W. Shor) 1994 года  вызвавшая лавинообразный рост числа публикаций о квантовых вы­числениях. Шор построил кван­товый (то есть реализуемый на квантовом компьютере) алгоритм факторизации (разложения це­лых чисел на множители - ис­пользуется в том числе для вскры­тия зашифрованных сообщений). Все известные алгоритмы для обычного компьютера - экспо­ненциальные (время их работы растет как экспонента от числа зна­ков в записи факторизуемого чис­ла). Факторизация 129-разряд­ного числа потребовала 500 MIPS-лет, или восемь месяцев непре­рывной работы системы из 1600 рабочих станций, объединенных через Интернет. А при числе раз­рядов порядка 300 это время су­щественно превзойдет возраст Вселенной - даже если работать одновременно на всех существующих в мире машинах. Считается (хотя это и не доказано!), что бы­строго алгоритма решения этой задачи не существует. Более того, гарантией надежности большин­ства существующих шифров яв­ляется именно сложность реше­ния задачи факторизации или од­ной из родственных ей теорети­ко-числовых задач, например - дискретного логарифма. И вдруг выясняется, что на квантовом ком­пьютере эта задача имеет всего лишь кубическую сложность! Пе­ред квантовым компьютером клас­сические банковские, военные и другие шифры мгновенно теряют всякую ценность. Короче говоря, работа Шора показала, что вся эта изысканная академическая дея­тельность непосредственно каса­ется такой первобытной стихии, как деньги. После этого и началась настоящая популярность...Впрочем, выясняется, что не толь­ко классическая, но и квантовая криптография (наука о шифрова­нии сообщений) часто не способна противостоять квантовой криптоаналитике (науке о расшифровке). Некоторые важные криптографи­ческие протоколы, такие как «под­брасывание монеты по телефону», рушатся при переходе к квантовым вычислениям. Точнее, гарантией их надежности является отныне не сложность тех или иных алгорит­мов, а сложность задачи создания квантового компьютера. Таким образом возникает новая отрасль вычислений – квантовые вычисления. Квантовые вычисления (КВ) - это, как можно догадаться, вычисле­ния на квантовом компьютере. Квантовые вычисления - пред­мет, чрезвычайно модный сейчас в математике и физике, как теоре­тической, так и эксперименталь­ной, и занимается им довольно много людей. Судя по всему, именно инте­рес стимулировал первопроход­цев - Ричарда Фейнмана, напи­савшего пионерскую работу, в ко­торой ставился вопрос о вычис­лительных возможностях уст­ройств на квантовых элементах; Дэвида Дойча, формализовавше­го этот вопрос в рамках современ­ной теории вычислений; и Питера Шора, придумавшего первый не­тривиальный квантовый алгоритм.

Поиск
Календарь
«  Май 2024  »
ПнВтСрЧтПтСбВс
  12345
6789101112
13141516171819
20212223242526
2728293031
Архив записей
Друзья сайта